13 research outputs found

    Efficient Teleportation between Remote Single-Atom Quantum Memories

    Full text link
    We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0+/-1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.Comment: 7 pages, 4 figures, 1 tabl

    Generation of single photons from an atom-cavity system

    Full text link
    A single rubidium atom trapped within a high-finesse optical cavity is an efficient source of single photons. We theoretically and experimentally study single-photon generation using a vacuum stimulated Raman adiabatic passage. We experimentally achieve photon generation efficiencies of up to 34% and 56% on the D1 and D2 line, respectively. Output coupling with 89% results in record-high efficiencies for single photons in one spatiotemporally well-defined propagating mode. We demonstrate that the observed generation efficiencies are constant in a wide range of applied pump laser powers and virtual level detunings. This allows for independent control over the frequency and wave packet envelope of the photons without loss in efficiency. In combination with the long trapping time of the atom in the cavity, our system constitutes a significant advancement toward an on-demand, highly efficient single-photon source for quantum information processing tasks.Comment: 7 pages, 5 figure

    An Elementary Quantum Network of Single Atoms in Optical Cavities

    Full text link
    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.Comment: 8 pages, 5 figure
    corecore